Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(33): e2301644120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549297

RESUMEN

Sensory inputs are conveyed to distinct primary areas of the neocortex through specific thalamocortical axons (TCA). While TCA have the ability to reorient postnatally to rescue embryonic mistargeting and target proper modality-specific areas, how this remarkable adaptive process is regulated remains largely unknown. Here, using a mutant mouse model with a shifted TCA trajectory during embryogenesis, we demonstrated that TCA rewiring occurs during a short postnatal time window, preceded by a prenatal apoptosis of thalamic neurons-two processes that together lead to the formation of properly innervated albeit reduced primary sensory areas. We furthermore showed that preterm birth, through serotonin modulation, impairs early postnatal TCA plasticity, as well as the subsequent delineation of cortical area boundary. Our study defines a birth and serotonin-sensitive period that enables concerted adaptations of TCA to primary cortical areas with major implications for our understanding of brain wiring in physiological and preterm conditions.


Asunto(s)
Neocórtex , Nacimiento Prematuro , Recién Nacido , Ratones , Animales , Humanos , Embarazo , Femenino , Neuronas/fisiología , Serotonina , Corteza Cerebral/fisiología , Recien Nacido Prematuro , Axones/fisiología , Tálamo/fisiología
2.
Cell Rep ; 39(2): 110667, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417707

RESUMEN

Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development.


Asunto(s)
Interneuronas , Células Piramidales , Dendritas/fisiología , Interneuronas/fisiología , Neuronas/fisiología , Tálamo
3.
Development ; 145(19)2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30177526

RESUMEN

Trio, a member of the Dbl family of guanine nucleotide exchange factors, activates Rac1 downstream of netrin 1/DCC signalling in axon outgrowth and guidance. Although it has been proposed that Trio also activates RhoA, the putative upstream factors remain unknown. Here, we show that Slit2 induces Trio-dependent RhoA activation, revealing a crosstalk between Slit and Trio/RhoA signalling. Consistently, we found that RhoA activity is hindered in vivo in Trio mutant mouse embryos. We next studied the development of the ventral telencephalon and thalamocortical axons, which have been previously shown to be controlled by Slit2. Remarkably, this analysis revealed that Trio knockout (KO) mice show phenotypes that bear strong similarities to the ones that have been reported in Slit2 KO mice in both guidepost corridor cells and thalamocortical axon pathfinding in the ventral telencephalon. Taken together, our results show that Trio induces RhoA activation downstream of Slit2, and support a functional role in ensuring the proper positioning of both guidepost cells and a major axonal tract. Our study indicates a novel role for Trio in Slit2 signalling and forebrain wiring, highlighting its role in multiple guidance pathways as well as in biological functions of importance for a factor involved in human brain disorders.


Asunto(s)
Tipificación del Cuerpo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Orientación del Axón , Axones/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones Noqueados , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tálamo/embriología , Tálamo/metabolismo
4.
J Comp Neurol ; 526(3): 397-411, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28921616

RESUMEN

In mammals, thalamic axons are guided internally toward their neocortical target by corridor (Co) neurons that act as axonal guideposts. The existence of Co-like neurons in non-mammalian species, in which thalamic axons do not grow internally, raised the possibility that Co cells might have an ancestral role. Here, we investigated the contribution of corridor (Co) cells to mature brain circuits using a combination of genetic fate-mapping and assays in mice. We unexpectedly found that Co neurons contribute to striatal-like projection neurons in the central extended amygdala. In particular, Co-like neurons participate in specific nuclei of the bed nucleus of the stria terminalis, which plays essential roles in anxiety circuits. Our study shows that Co neurons possess an evolutionary conserved role in anxiety circuits independently from an acquired guidepost function. It furthermore highlights that neurons can have multiple sequential functions during brain wiring and supports a general role of tangential migration in the building of subpallial circuits.


Asunto(s)
Vías Aferentes/fisiología , Orientación del Axón/genética , Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Tegmento Pontino , Tálamo , Animales , Animales Recién Nacidos , Toxina del Cólera/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Embrión de Mamíferos , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tegmento Pontino/citología , Tegmento Pontino/embriología , Tegmento Pontino/crecimiento & desarrollo , Embarazo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Tálamo/citología , Tálamo/embriología , Tálamo/crecimiento & desarrollo , Factor Nuclear Tiroideo 1/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Neural Dev ; 10: 5, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25888985

RESUMEN

BACKGROUND: Axon pathfinding is controlled by guidance cues that elicit specific attractive or repulsive responses in growth cones. It has now become clear that some cues such as Netrin-1 can trigger either attraction or repulsion in a context-dependent manner. In particular, it was recently found that the repellent Slit1 enables the attractive response of rostral thalamic axons to Netrin-1. This finding raised the intriguing possibility that Netrin-1 and Slit1, two essential guidance cues, may act more generally in an unexpected combinatorial manner to orient specific axonal populations. To address this major issue, we have used an innovative microfluidic device compatible not only with dissociated neuronal cultures but also with explant cultures to systematically and quantitatively characterize the combinatorial activity of Slit1 and Netrin-1 on rostral thalamic axons as well as on hippocampal neurons. RESULTS: We found that on rostral thalamic axons, only a subthreshold concentration of the repellent Slit1 triggered an attractive response to a gradient of Netrin-1. On hippocampal neurons, we similarly found that Slit1 alone is repulsive and a subthreshold concentration of Slit1 triggered a potent attractive or repulsive behavioral response to a gradient of Netrin-1, depending on the nature of the substrate. CONCLUSIONS: Our study reveals that at subthreshold repulsive levels, Slit1 acts as a potent promoter of both Netrin-1 attractive and repulsive activities on distinct neuronal cell types, thereby opening novel perspectives on the role of combinations of cues in brain wiring.


Asunto(s)
Axones/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/farmacología , Proteínas Supresoras de Tumor/farmacología , Animales , Axones/clasificación , Axones/fisiología , Técnicas de Cultivo de Célula/instrumentación , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Hipocampo/citología , Humanos , Laminina/farmacología , Ratones , Técnicas Analíticas Microfluídicas , Proteínas del Tejido Nervioso/administración & dosificación , Netrina-1 , Especificidad de Órganos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Tálamo/citología
6.
Semin Cell Dev Biol ; 35: 147-55, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25020201

RESUMEN

Sensory perception relies on the formation of stereotyped maps inside the brain. This feature is particularly well illustrated in the mammalian neocortex, which is subdivided into distinct cortical sensory areas that comprise topological maps, such as the somatosensory homunculus in humans or the barrel field of the large whiskers in rodents. How somatosensory maps are formed and relayed into the neocortex remain essential questions in developmental neuroscience. Here, we will present our current knowledge on whisker map transfer in the mouse model, with the goal of linking embryonic and postnatal studies into a comprehensive framework.


Asunto(s)
Modelos Neurológicos , Neocórtex/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Animales , Mapeo Encefálico , Ratones , Neocórtex/anatomía & histología , Neocórtex/embriología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/embriología , Vías Nerviosas/fisiología , Corteza Somatosensorial/anatomía & histología , Corteza Somatosensorial/embriología , Tálamo/anatomía & histología , Tálamo/embriología , Vibrisas/inervación , Vibrisas/fisiología
7.
Curr Opin Neurobiol ; 27: 143-50, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24742382

RESUMEN

Our understanding of axon pathfinding mechanisms has dramatically advanced thanks to the identification of guidance cues and receptors, and has been forged by the study of a limited number of model systems. Thalamocortical axons, which are essential for sensory processing and neocortical functioning, convey sensory information to the neocortex through a tightly controlled topographical interconnectivity between distinct thalamic neurons and cortical areas. Recent studies on this projection have provided mechanistic insights onto integrated processes controlling brain wiring: axons/guidepost cells interactions, building of reciprocal connections and the combinatorial activity of guidance cues. This review provides a selective overview of these novel features and stresses the interest of thalamocortical axons as an emerging model for studying axonal guidance and plasticity.


Asunto(s)
Axones/fisiología , Corteza Cerebral/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Tálamo/fisiología , Animales , Movimiento Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Humanos , Tálamo/citología , Tálamo/embriología
8.
Curr Biol ; 23(9): 810-6, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23623550

RESUMEN

Sensory maps, such as the representation of mouse facial whiskers, are conveyed throughout the nervous system by topographic axonal projections that preserve neighboring relationships between adjacent neurons. In particular, the map transfer to the neocortex is ensured by thalamocortical axons (TCAs), whose terminals are topographically organized in response to intrinsic cortical signals. However, TCAs already show a topographic order early in development, as they navigate toward their target. Here, we show that this preordering of TCAs is required for the transfer of the whisker map to the neocortex. Using Ebf1 conditional inactivation that specifically perturbs the development of an intermediate target, the basal ganglia, we scrambled TCA topography en route to the neocortex without affecting the thalamus or neocortex. Notably, embryonic somatosensory TCAs were shifted toward the visual cortex and showed a substantial intermixing along their trajectory. Somatosensory TCAs rewired postnatally to reach the somatosensory cortex but failed to form a topographic anatomical or functional map. Our study reveals that sensory map transfer relies not only on positional information in the projecting and target structures but also on preordering of axons along their trajectory, thereby opening novel perspectives on brain wiring.


Asunto(s)
Neocórtex/embriología , Corteza Somatosensorial/embriología , Tálamo/embriología , Vibrisas/embriología , Animales , Axones/metabolismo , Mapeo Encefálico , Ratones , Neocórtex/citología , Neocórtex/metabolismo , Corteza Somatosensorial/citología , Corteza Somatosensorial/metabolismo , Tálamo/citología , Tálamo/metabolismo , Transactivadores/metabolismo , Vibrisas/citología , Vibrisas/metabolismo
9.
Neuron ; 77(3): 472-84, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23395374

RESUMEN

Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.


Asunto(s)
Corteza Cerebral/fisiología , Vías Nerviosas/fisiología , Tálamo/fisiología , Factores de Edad , Animales , Axones/fisiología , Tipificación del Cuerpo/genética , Calbindina 2 , Corteza Cerebral/citología , Contactina 2/metabolismo , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Glicoproteínas/genética , Proteínas de Homeodominio/genética , Péptidos y Proteínas de Señalización Intracelular , Complejo de Antígeno L1 de Leucocito/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Factores del Dominio POU/genética , Proteínas Represoras/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Semaforinas , Proteínas de Dominio T Box , Tálamo/citología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína Wnt3A/genética , Proteínas tau/genética
10.
Nat Neurosci ; 15(8): 1134-43, 2012 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-22772332

RESUMEN

Developing axons must control their growth rate to follow the appropriate pathways and establish specific connections. However, the regulatory mechanisms involved remain elusive. By combining live imaging with transplantation studies in mice, we found that spontaneous calcium activity in the thalamocortical system and the growth rate of thalamocortical axons were developmentally and intrinsically regulated. Indeed, the spontaneous activity of thalamic neurons governed axon growth and extension through the cortex in vivo. This activity-dependent modulation of growth was mediated by transcriptional regulation of Robo1 through an NF-κB binding site. Disruption of either the Robo1 or Slit1 genes accelerated the progression of thalamocortical axons in vivo, and interfering with Robo1 signaling restored normal axon growth in electrically silent neurons. Thus, modifications to spontaneous calcium activity encode a switch in the axon outgrowth program that allows the establishment of specific neuronal connections through the transcriptional regulation of Slit1 and Robo1 signaling.


Asunto(s)
Axones/fisiología , Señalización del Calcio/genética , Corteza Cerebral/fisiología , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Tálamo/fisiología , Animales , Axones/patología , Calcio/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Proteínas del Tejido Nervioso/fisiología , Receptores Inmunológicos/fisiología , Tálamo/crecimiento & desarrollo , Proteínas Roundabout
11.
Eur J Neurosci ; 35(10): 1573-85, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22607003

RESUMEN

Thalamocortical axons must cross a complex cellular terrain through the developing forebrain, and this terrain has to be understood for us to learn how thalamocortical axons reach their destinations. Selective fasciculation, guidepost cells and various diencephalic and telencephalic gradients have been implicated in thalamocortical guidance. As our understanding of the relevant forebrain patterns has increased, so has our knowledge of the guidance mechanisms. Our aim here is to review recent observations of cellular and molecular mechanisms related to: the growth of thalamofugal projections to the ventral telencephalon, thalamic axon avoidance of the hypothalamus and extension into the telencephalon to form the internal capsule, the crossing of the pallial-subpallial boundary, and the growth towards the cerebral cortex. We shall review current theories for the explanation of the maintenance and alteration of topographic order in the thalamocortical projections to the cortex. It is now increasingly clear that several mechanisms are involved at different stages of thalamocortical development, and each contributes substantially to the eventual outcome. Revealing the molecular and cellular mechanisms can help to link specific genes to details of actual developmental mechanisms.


Asunto(s)
Axones/fisiología , Tipificación del Cuerpo/fisiología , Corteza Cerebral/embriología , Neuronas/citología , Tálamo/embriología , Animales , Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Modelos Biológicos , Vías Nerviosas/fisiología , Tálamo/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Curr Biol ; 21(20): 1748-55, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22000108

RESUMEN

How guidance cues are integrated during the formation of complex axonal tracts remains largely unknown. Thalamocortical axons (TCAs), which convey sensory and motor information to the neocortex, have a rostrocaudal topographic organization initially established within the ventral telencephalon [1-3]. Here, we show that this topography is set in a small hub, the corridor, which contains matching rostrocaudal gradients of Slit1 and Netrin 1. Using in vitro and in vivo experiments, we show that Slit1 is a rostral repellent that positions intermediate axons. For rostral axons, although Slit1 is also repulsive and Netrin 1 has no chemotactic activity, the two factors combined generate attraction. These results show that Slit1 has a dual context-dependent role in TCA pathfinding and furthermore reveal that a combination of cues produces an emergent activity that neither of them has alone. Our study thus provides a novel framework to explain how a limited set of guidance cues can generate a vast diversity of axonal responses necessary for proper wiring of the nervous system.


Asunto(s)
Axones/fisiología , Conos de Crecimiento/fisiología , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tálamo/embriología , Tálamo/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Células COS , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Chlorocebus aethiops , Efrina-A5/genética , Efrina-A5/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/genética , Netrina-1 , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Proteínas Supresoras de Tumor/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Proteínas Roundabout
13.
Neuron ; 69(6): 1085-98, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21435555

RESUMEN

How brain connectivity has evolved to integrate the mammalian-specific neocortex remains largely unknown. Here, we address how dorsal thalamic axons, which constitute the main input to the neocortex, are directed internally to their evolutionary novel target in mammals, though they follow an external path to other targets in reptiles and birds. Using comparative studies and functional experiments in chick, we show that local species-specific differences in the migration of previously identified "corridor" guidepost neurons control the opening of a mammalian thalamocortical route. Using in vivo and ex vivo experiments in mice, we further demonstrate that the midline repellent Slit2 orients migration of corridor neurons and thereby switches thalamic axons from an external to a mammalian-specific internal path. Our study reveals that subtle differences in the migration of conserved intermediate target neurons trigger large-scale changes in thalamic connectivity, and opens perspectives on Slit functions and the evolution of brain wiring.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Tálamo/metabolismo , Análisis de Varianza , Animales , Axones/metabolismo , Corteza Cerebral/embriología , Embrión de Pollo , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Red Nerviosa/embriología , Red Nerviosa/metabolismo , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Especificidad de la Especie , Tálamo/embriología , Tortugas
14.
BMC Biol ; 9: 1, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21214944

RESUMEN

Thalamocortical projections convey visual, somatosensory and auditory information to the cerebral cortex. A recent report in Neural Development shows how a forward genetic screen has enabled the identification of novel mutations affecting specific decision points of thalamocortical axon pathfinding.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Genes del Desarrollo , Mutación , Animales , Axones/fisiología , Ratones , Ratones Transgénicos , Tálamo/fisiología
15.
Cell ; 125(1): 127-42, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16615895

RESUMEN

Neuronal migration and axon guidance constitute fundamental processes in brain development that are generally studied independently. Although both share common mechanisms of cell biology and biochemistry, little is known about their coordinated integration in the formation of neural circuits. Here we show that the development of the thalamocortical projection, one of the most prominent tracts in the mammalian brain, depends on the early tangential migration of a population of neurons derived from the ventral telencephalon. This tangential migration contributes to the establishment of a permissive corridor that is essential for thalamocortical axon pathfinding. Our results also demonstrate that in this process two different products of the Neuregulin-1 gene, CRD-NRG1 and Ig-NRG1, mediate the guidance of thalamocortical axons. These results show that neuronal tangential migration constitutes a novel mechanism to control the timely arrangement of guidance cues required for axonal tract formation in the mammalian brain.


Asunto(s)
Axones/fisiología , Movimiento Celular , Corteza Cerebral/citología , Neurregulina-1/metabolismo , Tálamo/citología , Animales , Transporte Biológico , Células COS , Corteza Cerebral/metabolismo , Chlorocebus aethiops , Receptores ErbB/deficiencia , Ganglión/metabolismo , Ratones , Ratones Transgénicos , Neurregulina-1/deficiencia , Neurregulina-1/genética , Isoformas de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor ErbB-4 , Telencéfalo/citología , Tálamo/metabolismo
16.
J Neurosci ; 24(41): 8917-23, 2004 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-15483110

RESUMEN

The process of generating functionally distinct neocortical areas requires the formation of an intra-neocortical connectivity map. Here, we explore the early development of murine intra-neocortical projections and find that axons from rostral and caudal neurons remain, respectively, within large rostral and caudal domains of the neonatal neocortex. Despite evidence that thalamic input can regulate neocortical areal properties, we found that the neonatal intra-neocortical projection pattern was not perturbed when thalamic input was absent in Gbx2 mutants. On the contrary, in Fgf8 hypomorphic mutants, the rostral neocortex of which acquires more caudal molecular properties, caudally located neurons ectopically project axons into the rostral cortex. Therefore, neocortical patterning by Fgf8 also contributes to arealization through mediating early development of intra-neocortical connectivity.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Neocórtex/embriología , Neocórtex/metabolismo , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Animales , Axones/fisiología , Femenino , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Histocitoquímica , Proteínas de Homeodominio/genética , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Naftalenos , Neocórtex/citología , Vías Nerviosas/citología , Neuronas/citología , Neuronas/metabolismo , Organofosfonatos , Tálamo/fisiología
17.
Trends Neurosci ; 27(9): 533-9, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15331235

RESUMEN

Topography of axonal projections has been generally thought to arise from positional information located within the projecting and targeted structures, independent of events along the path or within the axonal bundle. Recent evidence suggests that in the projection from the dorsal thalamus to the neocortex, initial rostrocaudal targeting of axons is regulated at the level of an intermediate target, the subcortical telencephalon. In this system, thalamic axons are spatially positioned within the subcortical telencephalon, partly via interactions between EphAs and ephrin-As, and this positioning apparently determines the rostrocaudal level of the neocortex that the axons will initially target.


Asunto(s)
Axones/fisiología , Mapeo Encefálico , Corteza Cerebral/anatomía & histología , Vías Nerviosas/anatomía & histología , Tálamo/anatomía & histología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Corteza Cerebral/embriología , Conos de Crecimiento , Proteínas de Homeodominio/fisiología , Humanos , Ratones , Ratones Mutantes , Modelos Neurológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Vías Nerviosas/embriología , Receptores de la Familia Eph/fisiología , Tálamo/embriología , Factores de Transcripción/deficiencia , Factores de Transcripción/fisiología
18.
J Comp Neurol ; 457(4): 345-60, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12561075

RESUMEN

The homeobox transcription factors Emx1 and Emx2 are expressed in overlapping patterns that include cortical progenitors in the dorsal telencephalic neuroepithelium. We have addressed cooperation of Emx1 and Emx2 in cortical development by comparing phenotypes in Emx1; Emx2 double mutant mice with wild-type and Emx1 and Emx2 single mutants. Emx double mutant cortex is greatly reduced compared with wild types and Emx single mutants; the hippocampus and dentate gyrus are absent, and growth and lamination of the olfactory bulbs are defective. Cell proliferation and death are relatively normal early in cortical neurogenesis, suggesting that hypoplasia of the double mutant cortex is primarily due to earlier patterning defects. Expression of cortical markers persists in the reduced double mutant neocortex, but the laminar patterns exhibited are less sharp than normal, consistent with deficient cytoarchitecture, probably due in part to reduced numbers of preplate and Reelin-positive Cajal-Retzius neurons. Subplate neurons also exhibit abnormal differentiation in double mutants. Cortical efferent axons fail to exit the double mutant cortex, and TCAs pass through the striatum and approach the cortex but do not enter it. This TCA pathfinding defect appears to be non-cell autonomous and supports the hypothesis that cortical efferents are required scaffolds to guide TCAs into cortex. In double mutants, some TCAs fail to turn into ventral telencephalon and take an aberrant ventral trajectory; this pathfinding defect correlates with an Emx2 expression domain in ventral telencephalon. The more severe phenotypes in Emx double mutants suggest that Emx1 and Emx2 cooperate to regulate multiple features of cortical development.


Asunto(s)
Vías Aferentes/patología , Corteza Cerebral/patología , Proteínas de Homeodominio , Neuronas/patología , Bulbo Olfatorio/patología , Tálamo/patología , Vías Aferentes/crecimiento & desarrollo , Animales , Axones/patología , Muerte Celular , Diferenciación Celular , Corteza Cerebral/crecimiento & desarrollo , Vías Eferentes/crecimiento & desarrollo , Vías Eferentes/patología , Desarrollo Embrionario y Fetal , Regulación del Desarrollo de la Expresión Génica , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Mutantes , Mutación , Bulbo Olfatorio/crecimiento & desarrollo , Fenotipo , Proteína Reelina , Tálamo/crecimiento & desarrollo , Factores de Transcripción/genética
19.
Development ; 129(24): 5621-34, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12421703

RESUMEN

The prevailing model to explain the formation of topographic projections in the nervous system stipulates that this process is governed by information located within the projecting and targeted structures. In mammals, different thalamic nuclei establish highly ordered projections with specific neocortical domains and the mechanisms controlling the initial topography of these projections remain to be characterized. To address this issue, we examined Ebf1(-/-) embryos in which a subset of thalamic axons does not reach the neocortex. We show that the projections that do form between thalamic nuclei and neocortical domains have a shifted topography, in the absence of regionalization defects in the thalamus or neocortex. This shift is first detected inside the basal ganglia, a structure on the path of thalamic axons, and which develops abnormally in Ebf1(-/-) embryos. A similar shift in the topography of thalamocortical axons inside the basal ganglia and neocortex was observed in Dlx1/2(-/-) embryos, which also have an abnormal basal ganglia development. Furthermore, Dlx1 and Dlx2 are not expressed in the dorsal thalamus or in cortical projections neurons. Thus, our study shows that: (1) different thalamic nuclei do not establish projections independently of each other; (2) a shift in thalamocortical topography can occur in the absence of major regionalization defects in the dorsal thalamus and neocortex; and (3) the basal ganglia may contain decision points for thalamic axons' pathfinding and topographic organization. These observations suggest that the topography of thalamocortical projections is not strictly determined by cues located within the neocortex and may be regulated by the relative positioning of thalamic axons inside the basal ganglia.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/genética , Tálamo/patología , Transactivadores/genética , Animales , Axones/metabolismo , Proteínas de Unión al ADN/fisiología , Genotipo , Heterocigoto , Proteínas de Homeodominio/fisiología , Homocigoto , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Mutación , Factores de Tiempo , Transactivadores/fisiología , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA